444 lines
15 KiB
BibTeX
444 lines
15 KiB
BibTeX
@article{houghtransform,
|
|
title={A survey of the Hough transform},
|
|
author={Illingworth, John and Kittler, Josef},
|
|
journal={Computer vision, graphics, and image processing},
|
|
volume={44},
|
|
number={1},
|
|
pages={87--116},
|
|
year={1988},
|
|
publisher={Elsevier}
|
|
}
|
|
|
|
@article{cannyedge,
|
|
title={A computational approach to edge detection},
|
|
author={Canny, John},
|
|
journal={IEEE Transactions on pattern analysis and machine intelligence},
|
|
number={6},
|
|
pages={679--698},
|
|
year={1986},
|
|
publisher={IEEE}
|
|
}
|
|
|
|
@inproceedings{kluge1995deformable,
|
|
title={A deformable-template approach to lane detection},
|
|
author={Kluge, Karl and Lakshmanan, Sridhar},
|
|
booktitle={Proceedings of the Intelligent Vehicles' 95. Symposium},
|
|
pages={54--59},
|
|
year={1995},
|
|
organization={IEEE}
|
|
}
|
|
|
|
|
|
@article{yolov10,
|
|
title={Yolov10: Real-time end-to-end object detection},
|
|
author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
|
|
journal={arXiv preprint arXiv:2405.14458},
|
|
year={2024}
|
|
}
|
|
|
|
@article{fasterrcnn,
|
|
title={Faster R-CNN: Towards real-time object detection with region proposal networks},
|
|
author={Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian},
|
|
journal={IEEE transactions on pattern analysis and machine intelligence},
|
|
volume={39},
|
|
number={6},
|
|
pages={1137--1149},
|
|
year={2016},
|
|
publisher={IEEE}
|
|
}
|
|
|
|
@inproceedings{clrnet,
|
|
title={Clrnet: Cross layer refinement network for lane detection},
|
|
author={Zheng, Tu and Huang, Yifei and Liu, Yang and Tang, Wenjian and Yang, Zheng and Cai, Deng and He, Xiaofei},
|
|
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
|
|
pages={898--907},
|
|
year={2022}
|
|
}
|
|
|
|
@inproceedings{clrernet,
|
|
title={CLRerNet: improving confidence of lane detection with LaneIoU},
|
|
author={Honda, Hiroto and Uchida, Yusuke},
|
|
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
|
|
pages={1176--1185},
|
|
year={2024}
|
|
}
|
|
|
|
|
|
@inproceedings{laneatt,
|
|
title={Keep your eyes on the lane: Real-time attention-guided lane detection},
|
|
author={Tabelini, Lucas and Berriel, Rodrigo and Paixao, Thiago M and Badue, Claudine and De Souza, Alberto F and Oliveira-Santos, Thiago},
|
|
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
|
|
pages={294--302},
|
|
year={2021}
|
|
}
|
|
|
|
@inproceedings{adnet,
|
|
title={Adnet: Lane shape prediction via anchor decomposition},
|
|
author={Xiao, Lingyu and Li, Xiang and Yang, Sen and Yang, Wankou},
|
|
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
|
|
pages={6404--6413},
|
|
year={2023}
|
|
}
|
|
|
|
@inproceedings{srlane,
|
|
title={Sketch and Refine: Towards Fast and Accurate Lane Detection},
|
|
author={Chen, Chao and Liu, Jie and Zhou, Chang and Tang, Jie and Wu, Gangshan},
|
|
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
|
|
volume={38},
|
|
number={2},
|
|
pages={1001--1009},
|
|
year={2024}
|
|
}
|
|
|
|
|
|
@misc{tusimple,
|
|
author = {{TuSimple}},
|
|
title = {TuSimple Benchmark},
|
|
year = {2020},
|
|
url = {https://github.com/TuSimple/tusimple-benchmark/},
|
|
note = {Accessed: September 2020}
|
|
}
|
|
|
|
@inproceedings{scnn,
|
|
title={Spatial as deep: Spatial cnn for traffic scene understanding},
|
|
author={Pan, Xingang and Shi, Jianping and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
|
|
booktitle={Proceedings of the AAAI conference on artificial intelligence},
|
|
volume={32},
|
|
number={1},
|
|
year={2018}
|
|
}
|
|
|
|
@inproceedings{curvelanes,
|
|
title={Curvelane-nas: Unifying lane-sensitive architecture search and adaptive point blending},
|
|
author={Xu, Hang and Wang, Shaoju and Cai, Xinyue and Zhang, Wei and Liang, Xiaodan and Li, Zhenguo},
|
|
booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XV 16},
|
|
pages={689--704},
|
|
year={2020},
|
|
organization={Springer}
|
|
}
|
|
|
|
@inproceedings{llamas,
|
|
title={Unsupervised labeled lane markers using maps},
|
|
author={Behrendt, Karsten and Soussan, Ryan},
|
|
booktitle={Proceedings of the IEEE/CVF international conference on computer vision workshops},
|
|
pages={0--0},
|
|
year={2019}
|
|
}
|
|
|
|
@article{dalnet,
|
|
title={DALNet: A rail detection network based on dynamic anchor line},
|
|
author={Yu, Zichen and Liu, Quanli and Wang, Wei and Zhang, Liyong and Zhao, Xiaoguang},
|
|
journal={IEEE Transactions on Instrumentation and Measurement},
|
|
year={2024},
|
|
publisher={IEEE}
|
|
}
|
|
|
|
@article{lanenet,
|
|
title={Lanenet: Real-time lane detection networks for autonomous driving},
|
|
author={Wang, Ze and Ren, Weiqiang and Qiu, Qiang},
|
|
journal={arXiv preprint arXiv:1807.01726},
|
|
year={2018}
|
|
}
|
|
|
|
@inproceedings{CondLaneNet,
|
|
title={CondLaneNet: a top-to-down lane detection framework based on conditional convolution},
|
|
author={Liu, Lizhe and Chen, Xiaohao and Zhu, Siyu and Tan, Ping},
|
|
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
|
|
pages={3773--3782},
|
|
year={2021}
|
|
}
|
|
|
|
@inproceedings{ufld,
|
|
title={Ultra fast structure-aware deep lane detection},
|
|
author={Qin, Zequn and Wang, Huanyu and Li, Xi},
|
|
booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XXIV 16},
|
|
pages={276--291},
|
|
year={2020},
|
|
organization={Springer}
|
|
}
|
|
|
|
@article{ufldv2,
|
|
title={Ultra fast deep lane detection with hybrid anchor driven ordinal classification},
|
|
author={Qin, Zequn and Zhang, Pengyi and Li, Xi},
|
|
journal={IEEE transactions on pattern analysis and machine intelligence},
|
|
volume={46},
|
|
number={5},
|
|
pages={2555--2568},
|
|
year={2022},
|
|
publisher={IEEE}
|
|
}
|
|
|
|
@article{fololane,
|
|
title={Ultra fast deep lane detection with hybrid anchor driven ordinal classification},
|
|
author={Qin, Zequn and Zhang, Pengyi and Li, Xi},
|
|
journal={IEEE transactions on pattern analysis and machine intelligence},
|
|
volume={46},
|
|
number={5},
|
|
pages={2555--2568},
|
|
year={2022},
|
|
publisher={IEEE}
|
|
}
|
|
|
|
@article{ganet,
|
|
title={GAnet: genetic algorithm platform for pipe network optimisation},
|
|
author={Morley, MS and Atkinson, RM and Savi{\'c}, DA and Walters, GA},
|
|
journal={Advances in engineering software},
|
|
volume={32},
|
|
number={6},
|
|
pages={467--475},
|
|
year={2001},
|
|
publisher={Elsevier}
|
|
}
|
|
|
|
@inproceedings{polylanenet,
|
|
title={Polylanenet: Lane estimation via deep polynomial regression},
|
|
author={Tabelini, Lucas and Berriel, Rodrigo and Paixao, Thiago M and Badue, Claudine and De Souza, Alberto F and Oliveira-Santos, Thiago},
|
|
booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
|
|
pages={6150--6156},
|
|
year={2021},
|
|
organization={IEEE}
|
|
}
|
|
|
|
@inproceedings{bezierlanenet,
|
|
title={Rethinking efficient lane detection via curve modeling},
|
|
author={Feng, Zhengyang and Guo, Shaohua and Tan, Xin and Xu, Ke and Wang, Min and Ma, Lizhuang},
|
|
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
|
pages={17062--17070},
|
|
year={2022}
|
|
}
|
|
|
|
|
|
@article{yolox,
|
|
title={YOLOX: Exceeding YOLO series in 2021},
|
|
author={Zheng, Ge and Songtao, Liu and Feng, Wang and Zeming, Li and Jian, Sun and others},
|
|
journal={arXiv preprint arXiv:2107.08430},
|
|
year={2021},
|
|
publisher={arXiv}
|
|
}
|
|
|
|
@inproceedings{lstr,
|
|
title={End-to-end lane shape prediction with transformers},
|
|
author={Liu, Ruijin and Yuan, Zejian and Liu, Tie and Xiong, Zhiliang},
|
|
booktitle={Proceedings of the IEEE/CVF winter conference on applications of computer vision},
|
|
pages={3694--3702},
|
|
year={2021}
|
|
}
|
|
|
|
@inproceedings{detr,
|
|
title={End-to-end object detection with transformers},
|
|
author={Carion, Nicolas and Massa, Francisco and Synnaeve, Gabriel and Usunier, Nicolas and Kirillov, Alexander and Zagoruyko, Sergey},
|
|
booktitle={European conference on computer vision},
|
|
pages={213--229},
|
|
year={2020},
|
|
organization={Springer}
|
|
}
|
|
|
|
@inproceedings{o2o,
|
|
title={What makes for end-to-end object detection?},
|
|
author={Sun, Peize and Jiang, Yi and Xie, Enze and Shao, Wenqi and Yuan, Zehuan and Wang, Changhu and Luo, Ping},
|
|
booktitle={International Conference on Machine Learning},
|
|
pages={9934--9944},
|
|
year={2021},
|
|
organization={PMLR}
|
|
}
|
|
|
|
@inproceedings{relationnet,
|
|
title={Relation networks for object detection},
|
|
author={Hu, Han and Gu, Jiayuan and Zhang, Zheng and Dai, Jifeng and Wei, Yichen},
|
|
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
|
|
pages={3588--3597},
|
|
year={2018}
|
|
}
|
|
|
|
@article{date,
|
|
title={Date: Dual assignment for end-to-end fully convolutional object detection},
|
|
author={Chen, Yiqun and Chen, Qiang and Hu, Qinghao and Cheng, Jian},
|
|
journal={arXiv preprint arXiv:2211.13859},
|
|
year={2022}
|
|
}
|
|
|
|
@inproceedings{o3d,
|
|
title={End-to-end object detection with fully convolutional network},
|
|
author={Wang, Jianfeng and Song, Lin and Li, Zeming and Sun, Hongbin and Sun, Jian and Zheng, Nanning},
|
|
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
|
|
pages={15849--15858},
|
|
year={2021}
|
|
}
|
|
|
|
@inproceedings{learnNMS,
|
|
title={Learning non-maximum suppression},
|
|
author={Hosang, Jan and Benenson, Rodrigo and Schiele, Bernt},
|
|
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
|
|
pages={4507--4515},
|
|
year={2017}
|
|
}
|
|
|
|
|
|
@article{linecnn,
|
|
title={Line-cnn: End-to-end traffic line detection with line proposal unit},
|
|
author={Li, Xiang and Li, Jun and Hu, Xiaolin and Yang, Jian},
|
|
journal={IEEE Transactions on Intelligent Transportation Systems},
|
|
volume={21},
|
|
number={1},
|
|
pages={248--258},
|
|
year={2019},
|
|
publisher={IEEE}
|
|
}
|
|
|
|
@article{sparse,
|
|
title={Sparse Laneformer},
|
|
author={Liu, Ji and Zhang, Zifeng and Lu, Mingjie and Wei, Hongyang and Li, Dong and Xie, Yile and Peng, Jinzhang and Tian, Lu and Sirasao, Ashish and Barsoum, Emad},
|
|
journal={arXiv preprint arXiv:2404.07821},
|
|
year={2024}
|
|
}
|
|
|
|
@inproceedings{vil100,
|
|
title={Vil-100: A new dataset and a baseline model for video instance lane detection},
|
|
author={Zhang, Yujun and Zhu, Lei and Feng, Wei and Fu, Huazhu and Wang, Mingqian and Li, Qingxia and Li, Cheng and Wang, Song},
|
|
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
|
|
pages={15681--15690},
|
|
year={2021}
|
|
}
|
|
|
|
@article{xu2022overview,
|
|
title={Overview frequency principle/spectral bias in deep learning},
|
|
author={Xu, Zhi-Qin John and Zhang, Yaoyu and Luo, Tao},
|
|
journal={arXiv preprint arXiv:2201.07395},
|
|
year={2022}
|
|
}
|
|
|
|
@inproceedings{stewart2016end,
|
|
title={End-to-end people detection in crowded scenes},
|
|
author={Stewart, Russell and Andriluka, Mykhaylo and Ng, Andrew Y},
|
|
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
|
|
pages={2325--2333},
|
|
year={2016}
|
|
}
|
|
|
|
|
|
@inproceedings{yolact,
|
|
title={Yolact: Real-time instance segmentation},
|
|
author={Bolya, Daniel and Zhou, Chong and Xiao, Fanyi and Lee, Yong Jae},
|
|
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
|
|
pages={9157--9166},
|
|
year={2019}
|
|
}
|
|
|
|
@article{alemi2016deep,
|
|
title={Deep variational information bottleneck},
|
|
author={Alemi, Alexander A and Fischer, Ian and Dillon, Joshua V and Murphy, Kevin},
|
|
journal={arXiv preprint arXiv:1612.00410},
|
|
year={2016}
|
|
}
|
|
|
|
@inproceedings{focal,
|
|
title={Focal loss for dense object detection},
|
|
author={Lin, Tsung-Yi and Goyal, Priya and Girshick, Ross and He, Kaiming and Doll{\'a}r, Piotr},
|
|
booktitle={Proceedings of the IEEE international conference on computer vision},
|
|
pages={2980--2988},
|
|
year={2017}
|
|
}
|
|
|
|
@inproceedings{resnet,
|
|
title={Deep residual learning for image recognition},
|
|
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
|
|
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
|
|
pages={770--778},
|
|
year={2016}
|
|
}
|
|
|
|
@article{adam,
|
|
title={Adam: A method for stochastic optimization},
|
|
author={Kingma, Diederik P},
|
|
journal={arXiv preprint arXiv:1412.6980},
|
|
year={2014}
|
|
}
|
|
|
|
@inproceedings{dla,
|
|
title={Deep layer aggregation},
|
|
author={Yu, Fisher and Wang, Dequan and Shelhamer, Evan and Darrell, Trevor},
|
|
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
|
|
pages={2403--2412},
|
|
year={2018}
|
|
}
|
|
|
|
@inproceedings{resa,
|
|
title={Resa: Recurrent feature-shift aggregator for lane detection},
|
|
author={Zheng, Tu and Fang, Hao and Zhang, Yi and Tang, Wenjian and Yang, Zheng and Liu, Haifeng and Cai, Deng},
|
|
booktitle={Proceedings of the AAAI conference on artificial intelligence},
|
|
volume={35},
|
|
number={4},
|
|
pages={3547--3554},
|
|
year={2021}
|
|
}
|
|
|
|
@article{bsnet,
|
|
title={Bsnet: Lane detection via draw b-spline curves nearby},
|
|
author={Chen, Haoxin and Wang, Mengmeng and Liu, Yong},
|
|
journal={arXiv preprint arXiv:2301.06910},
|
|
year={2023}
|
|
}
|
|
|
|
@inproceedings{eigenlanes,
|
|
title={Eigenlanes: Data-driven lane descriptors for structurally diverse lanes},
|
|
author={Jin, Dongkwon and Park, Wonhui and Jeong, Seong-Gyun and Kwon, Heeyeon and Kim, Chang-Su},
|
|
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
|
|
pages={17163--17171},
|
|
year={2022}
|
|
}
|
|
|
|
@article{laneaf,
|
|
title={Laneaf: Robust multi-lane detection with affinity fields},
|
|
author={Abualsaud, Hala and Liu, Sean and Lu, David B and Situ, Kenny and Rangesh, Akshay and Trivedi, Mohan M},
|
|
journal={IEEE Robotics and Automation Letters},
|
|
volume={6},
|
|
number={4},
|
|
pages={7477--7484},
|
|
year={2021},
|
|
publisher={IEEE}
|
|
}
|
|
|
|
@inproceedings{enetsad,
|
|
title={Learning lightweight lane detection cnns by self attention distillation},
|
|
author={Hou, Yuenan and Ma, Zheng and Liu, Chunxiao and Loy, Chen Change},
|
|
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
|
|
pages={1013--1021},
|
|
year={2019}
|
|
}
|
|
|
|
@inproceedings{pointlanenet,
|
|
title={Pointlanenet: Efficient end-to-end cnns for accurate real-time lane detection},
|
|
author={Chen, Zhenpeng and Liu, Qianfei and Lian, Chenfan},
|
|
booktitle={2019 IEEE intelligent vehicles symposium (IV)},
|
|
pages={2563--2568},
|
|
year={2019},
|
|
organization={IEEE}
|
|
}
|
|
|
|
|
|
@article{pss,
|
|
title={Object detection made simpler by eliminating heuristic NMS},
|
|
author={Zhou, Qiang and Yu, Chaohui},
|
|
journal={IEEE Transactions on Multimedia},
|
|
volume={25},
|
|
pages={9254--9262},
|
|
year={2023},
|
|
publisher={IEEE}
|
|
}
|
|
|
|
@inproceedings{iouloss,
|
|
title={Unitbox: An advanced object detection network},
|
|
author={Yu, Jiahui and Jiang, Yuning and Wang, Zhangyang and Cao, Zhimin and Huang, Thomas},
|
|
booktitle={Proceedings of the 24th ACM international conference on Multimedia},
|
|
pages={516--520},
|
|
year={2016}
|
|
}
|
|
|
|
@inproceedings{giouloss,
|
|
title={Generalized intersection over union: A metric and a loss for bounding box regression},
|
|
author={Rezatofighi, Hamid and Tsoi, Nathan and Gwak, JunYoung and Sadeghian, Amir and Reid, Ian and Savarese, Silvio},
|
|
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
|
|
pages={658--666},
|
|
year={2019}
|
|
}
|