% Generated by IEEEtran.bst, version: 1.14 (2015/08/26) \begin{thebibliography}{10} \providecommand{\url}[1]{#1} \csname url@samestyle\endcsname \providecommand{\newblock}{\relax} \providecommand{\bibinfo}[2]{#2} \providecommand{\BIBentrySTDinterwordspacing}{\spaceskip=0pt\relax} \providecommand{\BIBentryALTinterwordstretchfactor}{4} \providecommand{\BIBentryALTinterwordspacing}{\spaceskip=\fontdimen2\font plus \BIBentryALTinterwordstretchfactor\fontdimen3\font minus \fontdimen4\font\relax} \providecommand{\BIBforeignlanguage}[2]{{% \expandafter\ifx\csname l@#1\endcsname\relax \typeout{** WARNING: IEEEtran.bst: No hyphenation pattern has been}% \typeout{** loaded for the language `#1'. Using the pattern for}% \typeout{** the default language instead.}% \else \language=\csname l@#1\endcsname \fi #2}} \providecommand{\BIBdecl}{\relax} \BIBdecl \bibitem{cannyedge} J.~Canny, ``A computational approach to edge detection,'' \emph{IEEE Transactions on pattern analysis and machine intelligence}, no.~6, pp. 679--698, 1986. \bibitem{houghtransform} J.~Illingworth and J.~Kittler, ``A survey of the hough transform,'' \emph{Computer vision, graphics, and image processing}, vol.~44, no.~1, pp. 87--116, 1988. \bibitem{kluge1995deformable} K.~Kluge and S.~Lakshmanan, ``A deformable-template approach to lane detection,'' in \emph{Proceedings of the Intelligent Vehicles' 95. Symposium}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE, 1995, pp. 54--59. \bibitem{yolov10} A.~Wang, H.~Chen, L.~Liu, K.~Chen, Z.~Lin, J.~Han, and G.~Ding, ``Yolov10: Real-time end-to-end object detection,'' \emph{arXiv preprint arXiv:2405.14458}, 2024. \bibitem{fasterrcnn} S.~Ren, K.~He, R.~Girshick, and J.~Sun, ``Faster r-cnn: Towards real-time object detection with region proposal networks,'' \emph{IEEE transactions on pattern analysis and machine intelligence}, vol.~39, no.~6, pp. 1137--1149, 2016. \bibitem{laneatt} L.~Tabelini, R.~Berriel, T.~M. Paixao, C.~Badue, A.~F. De~Souza, and T.~Oliveira-Santos, ``Keep your eyes on the lane: Real-time attention-guided lane detection,'' in \emph{Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, 2021, pp. 294--302. \bibitem{clrnet} T.~Zheng, Y.~Huang, Y.~Liu, W.~Tang, Z.~Yang, D.~Cai, and X.~He, ``Clrnet: Cross layer refinement network for lane detection,'' in \emph{Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, 2022, pp. 898--907. \bibitem{adnet} L.~Xiao, X.~Li, S.~Yang, and W.~Yang, ``Adnet: Lane shape prediction via anchor decomposition,'' in \emph{Proceedings of the IEEE/CVF International Conference on Computer Vision}, 2023, pp. 6404--6413. \bibitem{srlane} C.~Chen, J.~Liu, C.~Zhou, J.~Tang, and G.~Wu, ``Sketch and refine: Towards fast and accurate lane detection,'' in \emph{Proceedings of the AAAI Conference on Artificial Intelligence}, vol.~38, no.~2, 2024, pp. 1001--1009. \bibitem{clrernet} H.~Honda and Y.~Uchida, ``Clrernet: improving confidence of lane detection with laneiou,'' in \emph{Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision}, 2024, pp. 1176--1185. \bibitem{tusimple} \BIBentryALTinterwordspacing {TuSimple}, ``Tusimple benchmark,'' 2020, accessed: September 2020. [Online]. Available: \url{https://github.com/TuSimple/tusimple-benchmark/} \BIBentrySTDinterwordspacing \bibitem{scnn} X.~Pan, J.~Shi, P.~Luo, X.~Wang, and X.~Tang, ``Spatial as deep: Spatial cnn for traffic scene understanding,'' in \emph{Proceedings of the AAAI conference on artificial intelligence}, vol.~32, no.~1, 2018. \bibitem{llamas} K.~Behrendt and R.~Soussan, ``Unsupervised labeled lane markers using maps,'' in \emph{Proceedings of the IEEE/CVF international conference on computer vision workshops}, 2019, pp. 0--0. \bibitem{curvelanes} H.~Xu, S.~Wang, X.~Cai, W.~Zhang, X.~Liang, and Z.~Li, ``Curvelane-nas: Unifying lane-sensitive architecture search and adaptive point blending,'' in \emph{Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XV 16}.\hskip 1em plus 0.5em minus 0.4em\relax Springer, 2020, pp. 689--704. \bibitem{dalnet} Z.~Yu, Q.~Liu, W.~Wang, L.~Zhang, and X.~Zhao, ``Dalnet: A rail detection network based on dynamic anchor line,'' \emph{IEEE Transactions on Instrumentation and Measurement}, 2024. \bibitem{lanenet} Z.~Wang, W.~Ren, and Q.~Qiu, ``Lanenet: Real-time lane detection networks for autonomous driving,'' \emph{arXiv preprint arXiv:1807.01726}, 2018. \bibitem{ufld} Z.~Qin, H.~Wang, and X.~Li, ``Ultra fast structure-aware deep lane detection,'' in \emph{Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XXIV 16}.\hskip 1em plus 0.5em minus 0.4em\relax Springer, 2020, pp. 276--291. \bibitem{ufldv2} Z.~Qin, P.~Zhang, and X.~Li, ``Ultra fast deep lane detection with hybrid anchor driven ordinal classification,'' \emph{IEEE transactions on pattern analysis and machine intelligence}, vol.~46, no.~5, pp. 2555--2568, 2022. \bibitem{condlanenet} L.~Liu, X.~Chen, S.~Zhu, and P.~Tan, ``Condlanenet: a top-to-down lane detection framework based on conditional convolution,'' in \emph{Proceedings of the IEEE/CVF international conference on computer vision}, 2021, pp. 3773--3782. \bibitem{fololane} Z.~Qin, P.~Zhang, and X.~Li, ``Ultra fast deep lane detection with hybrid anchor driven ordinal classification,'' \emph{IEEE transactions on pattern analysis and machine intelligence}, vol.~46, no.~5, pp. 2555--2568, 2022. \bibitem{ganet} M.~Morley, R.~Atkinson, D.~Savi{\'c}, and G.~Walters, ``Ganet: genetic algorithm platform for pipe network optimisation,'' \emph{Advances in engineering software}, vol.~32, no.~6, pp. 467--475, 2001. \bibitem{polylanenet} L.~Tabelini, R.~Berriel, T.~M. Paixao, C.~Badue, A.~F. De~Souza, and T.~Oliveira-Santos, ``Polylanenet: Lane estimation via deep polynomial regression,'' in \emph{2020 25th International Conference on Pattern Recognition (ICPR)}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE, 2021, pp. 6150--6156. \bibitem{lstr} R.~Liu, Z.~Yuan, T.~Liu, and Z.~Xiong, ``End-to-end lane shape prediction with transformers,'' in \emph{Proceedings of the IEEE/CVF winter conference on applications of computer vision}, 2021, pp. 3694--3702. \bibitem{bezierlanenet} Z.~Feng, S.~Guo, X.~Tan, K.~Xu, M.~Wang, and L.~Ma, ``Rethinking efficient lane detection via curve modeling,'' in \emph{Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, 2022, pp. 17\,062--17\,070. \bibitem{yolox} G.~Zheng, L.~Songtao, W.~Feng, L.~Zeming, S.~Jian \emph{et~al.}, ``Yolox: Exceeding yolo series in 2021,'' \emph{arXiv preprint arXiv:2107.08430}, 2021. \bibitem{sparse} J.~Liu, Z.~Zhang, M.~Lu, H.~Wei, D.~Li, Y.~Xie, J.~Peng, L.~Tian, A.~Sirasao, and E.~Barsoum, ``Sparse laneformer,'' \emph{arXiv preprint arXiv:2404.07821}, 2024. \bibitem{detr} N.~Carion, F.~Massa, G.~Synnaeve, N.~Usunier, A.~Kirillov, and S.~Zagoruyko, ``End-to-end object detection with transformers,'' in \emph{European conference on computer vision}.\hskip 1em plus 0.5em minus 0.4em\relax Springer, 2020, pp. 213--229. \bibitem{o2o} P.~Sun, Y.~Jiang, E.~Xie, W.~Shao, Z.~Yuan, C.~Wang, and P.~Luo, ``What makes for end-to-end object detection?'' in \emph{International Conference on Machine Learning}.\hskip 1em plus 0.5em minus 0.4em\relax PMLR, 2021, pp. 9934--9944. \bibitem{learnnms} J.~Hosang, R.~Benenson, and B.~Schiele, ``Learning non-maximum suppression,'' in \emph{Proceedings of the IEEE conference on computer vision and pattern recognition}, 2017, pp. 4507--4515. \bibitem{date} Y.~Chen, Q.~Chen, Q.~Hu, and J.~Cheng, ``Date: Dual assignment for end-to-end fully convolutional object detection,'' \emph{arXiv preprint arXiv:2211.13859}, 2022. \bibitem{o3d} J.~Wang, L.~Song, Z.~Li, H.~Sun, J.~Sun, and N.~Zheng, ``End-to-end object detection with fully convolutional network,'' in \emph{Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, 2021, pp. 15\,849--15\,858. \bibitem{relationnet} H.~Hu, J.~Gu, Z.~Zhang, J.~Dai, and Y.~Wei, ``Relation networks for object detection,'' in \emph{Proceedings of the IEEE conference on computer vision and pattern recognition}, 2018, pp. 3588--3597. \bibitem{linecnn} X.~Li, J.~Li, X.~Hu, and J.~Yang, ``Line-cnn: End-to-end traffic line detection with line proposal unit,'' \emph{IEEE Transactions on Intelligent Transportation Systems}, vol.~21, no.~1, pp. 248--258, 2019. \bibitem{vil100} Y.~Zhang, L.~Zhu, W.~Feng, H.~Fu, M.~Wang, Q.~Li, C.~Li, and S.~Wang, ``Vil-100: A new dataset and a baseline model for video instance lane detection,'' in \emph{Proceedings of the IEEE/CVF international conference on computer vision}, 2021, pp. 15\,681--15\,690. \bibitem{xu2022overview} Z.-Q.~J. Xu, Y.~Zhang, and T.~Luo, ``Overview frequency principle/spectral bias in deep learning,'' \emph{arXiv preprint arXiv:2201.07395}, 2022. \bibitem{stewart2016end} R.~Stewart, M.~Andriluka, and A.~Y. Ng, ``End-to-end people detection in crowded scenes,'' in \emph{Proceedings of the IEEE conference on computer vision and pattern recognition}, 2016, pp. 2325--2333. \bibitem{yolact} D.~Bolya, C.~Zhou, F.~Xiao, and Y.~J. Lee, ``Yolact: Real-time instance segmentation,'' in \emph{Proceedings of the IEEE/CVF international conference on computer vision}, 2019, pp. 9157--9166. \bibitem{alemi2016deep} A.~A. Alemi, I.~Fischer, J.~V. Dillon, and K.~Murphy, ``Deep variational information bottleneck,'' \emph{arXiv preprint arXiv:1612.00410}, 2016. \bibitem{focal} T.-Y. Lin, P.~Goyal, R.~Girshick, K.~He, and P.~Doll{\'a}r, ``Focal loss for dense object detection,'' in \emph{Proceedings of the IEEE international conference on computer vision}, 2017, pp. 2980--2988. \bibitem{pss} Q.~Zhou and C.~Yu, ``Object detection made simpler by eliminating heuristic nms,'' \emph{IEEE Transactions on Multimedia}, vol.~25, pp. 9254--9262, 2023. \bibitem{adam} D.~P. Kingma, ``Adam: A method for stochastic optimization,'' \emph{arXiv preprint arXiv:1412.6980}, 2014. \bibitem{resnet} K.~He, X.~Zhang, S.~Ren, and J.~Sun, ``Deep residual learning for image recognition,'' in \emph{Proceedings of the IEEE conference on computer vision and pattern recognition}, 2016, pp. 770--778. \bibitem{dla} F.~Yu, D.~Wang, E.~Shelhamer, and T.~Darrell, ``Deep layer aggregation,'' in \emph{Proceedings of the IEEE conference on computer vision and pattern recognition}, 2018, pp. 2403--2412. \bibitem{resa} T.~Zheng, H.~Fang, Y.~Zhang, W.~Tang, Z.~Yang, H.~Liu, and D.~Cai, ``Resa: Recurrent feature-shift aggregator for lane detection,'' in \emph{Proceedings of the AAAI conference on artificial intelligence}, vol.~35, no.~4, 2021, pp. 3547--3554. \bibitem{laneaf} H.~Abualsaud, S.~Liu, D.~B. Lu, K.~Situ, A.~Rangesh, and M.~M. Trivedi, ``Laneaf: Robust multi-lane detection with affinity fields,'' \emph{IEEE Robotics and Automation Letters}, vol.~6, no.~4, pp. 7477--7484, 2021. \bibitem{bsnet} H.~Chen, M.~Wang, and Y.~Liu, ``Bsnet: Lane detection via draw b-spline curves nearby,'' \emph{arXiv preprint arXiv:2301.06910}, 2023. \bibitem{eigenlanes} D.~Jin, W.~Park, S.-G. Jeong, H.~Kwon, and C.-S. Kim, ``Eigenlanes: Data-driven lane descriptors for structurally diverse lanes,'' in \emph{Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, 2022, pp. 17\,163--17\,171. \bibitem{enetsad} Y.~Hou, Z.~Ma, C.~Liu, and C.~C. Loy, ``Learning lightweight lane detection cnns by self attention distillation,'' in \emph{Proceedings of the IEEE/CVF international conference on computer vision}, 2019, pp. 1013--1021. \bibitem{pointlanenet} Z.~Chen, Q.~Liu, and C.~Lian, ``Pointlanenet: Efficient end-to-end cnns for accurate real-time lane detection,'' in \emph{2019 IEEE intelligent vehicles symposium (IV)}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE, 2019, pp. 2563--2568. \end{thebibliography}