% Generated by IEEEtran.bst, version: 1.14 (2015/08/26) \begin{thebibliography}{10} \providecommand{\url}[1]{#1} \csname url@samestyle\endcsname \providecommand{\newblock}{\relax} \providecommand{\bibinfo}[2]{#2} \providecommand{\BIBentrySTDinterwordspacing}{\spaceskip=0pt\relax} \providecommand{\BIBentryALTinterwordstretchfactor}{4} \providecommand{\BIBentryALTinterwordspacing}{\spaceskip=\fontdimen2\font plus \BIBentryALTinterwordstretchfactor\fontdimen3\font minus \fontdimen4\font\relax} \providecommand{\BIBforeignlanguage}[2]{{% \expandafter\ifx\csname l@#1\endcsname\relax \typeout{** WARNING: IEEEtran.bst: No hyphenation pattern has been}% \typeout{** loaded for the language `#1'. Using the pattern for}% \typeout{** the default language instead.}% \else \language=\csname l@#1\endcsname \fi #2}} \providecommand{\BIBdecl}{\relax} \BIBdecl \bibitem{detr} N.~Carion, F.~Massa, G.~Synnaeve, N.~Usunier, A.~Kirillov, and S.~Zagoruyko, ``End-to-end object detection with transformers,'' in \emph{European conference on computer vision}.\hskip 1em plus 0.5em minus 0.4em\relax Springer, 2020, pp. 213--229. \bibitem{learnNMS} J.~Hosang, R.~Benenson, and B.~Schiele, ``Learning non-maximum suppression,'' in \emph{Proceedings of the IEEE conference on computer vision and pattern recognition}, 2017, pp. 4507--4515. \bibitem{yolov10} A.~Wang, H.~Chen, L.~Liu, K.~Chen, Z.~Lin, J.~Han, and G.~Ding, ``Yolov10: Real-time end-to-end object detection,'' \emph{arXiv preprint arXiv:2405.14458}, 2024. \bibitem{o2o} P.~Sun, Y.~Jiang, E.~Xie, W.~Shao, Z.~Yuan, C.~Wang, and P.~Luo, ``What makes for end-to-end object detection?'' in \emph{International Conference on Machine Learning}.\hskip 1em plus 0.5em minus 0.4em\relax PMLR, 2021, pp. 9934--9944. \bibitem{o3d} J.~Wang, L.~Song, Z.~Li, H.~Sun, J.~Sun, and N.~Zheng, ``End-to-end object detection with fully convolutional network,'' in \emph{Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, 2021, pp. 15\,849--15\,858. \bibitem{relationnet} H.~Hu, J.~Gu, Z.~Zhang, J.~Dai, and Y.~Wei, ``Relation networks for object detection,'' in \emph{Proceedings of the IEEE conference on computer vision and pattern recognition}, 2018, pp. 3588--3597. \bibitem{yolact} D.~Bolya, C.~Zhou, F.~Xiao, and Y.~J. Lee, ``Yolact: Real-time instance segmentation,'' in \emph{Proceedings of the IEEE/CVF international conference on computer vision}, 2019, pp. 9157--9166. \bibitem{iouloss} J.~Yu, Y.~Jiang, Z.~Wang, Z.~Cao, and T.~Huang, ``Unitbox: An advanced object detection network,'' in \emph{Proceedings of the 24th ACM international conference on Multimedia}, 2016, pp. 516--520. \bibitem{giouloss} H.~Rezatofighi, N.~Tsoi, J.~Gwak, A.~Sadeghian, I.~Reid, and S.~Savarese, ``Generalized intersection over union: A metric and a loss for bounding box regression,'' in \emph{Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, 2019, pp. 658--666. \bibitem{clrnet} T.~Zheng, Y.~Huang, Y.~Liu, W.~Tang, Z.~Yang, D.~Cai, and X.~He, ``Clrnet: Cross layer refinement network for lane detection,'' in \emph{Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, 2022, pp. 898--907. \bibitem{adnet} L.~Xiao, X.~Li, S.~Yang, and W.~Yang, ``Adnet: Lane shape prediction via anchor decomposition,'' in \emph{Proceedings of the IEEE/CVF International Conference on Computer Vision}, 2023, pp. 6404--6413. \bibitem{date} Y.~Chen, Q.~Chen, Q.~Hu, and J.~Cheng, ``Date: Dual assignment for end-to-end fully convolutional object detection,'' \emph{arXiv preprint arXiv:2211.13859}, 2022. \bibitem{clrernet} H.~Honda and Y.~Uchida, ``Clrernet: improving confidence of lane detection with laneiou,'' in \emph{Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision}, 2024, pp. 1176--1185. \bibitem{yolox} G.~Zheng, L.~Songtao, W.~Feng, L.~Zeming, S.~Jian \emph{et~al.}, ``Yolox: Exceeding yolo series in 2021,'' \emph{arXiv preprint arXiv:2107.08430}, 2021. \end{thebibliography}