From 8ccf5a9a4db0d287c63a7ee6fb9d864f94c44a35 Mon Sep 17 00:00:00 2001 From: ShqWW Date: Fri, 13 Sep 2024 11:47:10 +0800 Subject: [PATCH] upate --- main.bbl | 292 ------------------------------------------------------- 1 file changed, 292 deletions(-) delete mode 100644 main.bbl diff --git a/main.bbl b/main.bbl deleted file mode 100644 index b7814b3..0000000 --- a/main.bbl +++ /dev/null @@ -1,292 +0,0 @@ -% Generated by IEEEtran.bst, version: 1.14 (2015/08/26) -\begin{thebibliography}{10} -\providecommand{\url}[1]{#1} -\csname url@samestyle\endcsname -\providecommand{\newblock}{\relax} -\providecommand{\bibinfo}[2]{#2} -\providecommand{\BIBentrySTDinterwordspacing}{\spaceskip=0pt\relax} -\providecommand{\BIBentryALTinterwordstretchfactor}{4} -\providecommand{\BIBentryALTinterwordspacing}{\spaceskip=\fontdimen2\font plus -\BIBentryALTinterwordstretchfactor\fontdimen3\font minus - \fontdimen4\font\relax} -\providecommand{\BIBforeignlanguage}[2]{{% -\expandafter\ifx\csname l@#1\endcsname\relax -\typeout{** WARNING: IEEEtran.bst: No hyphenation pattern has been}% -\typeout{** loaded for the language `#1'. Using the pattern for}% -\typeout{** the default language instead.}% -\else -\language=\csname l@#1\endcsname -\fi -#2}} -\providecommand{\BIBdecl}{\relax} -\BIBdecl - -\bibitem{cannyedge} -J.~Canny, ``A computational approach to edge detection,'' \emph{IEEE - Transactions on pattern analysis and machine intelligence}, no.~6, pp. - 679--698, 1986. - -\bibitem{houghtransform} -J.~Illingworth and J.~Kittler, ``A survey of the hough transform,'' - \emph{Computer vision, graphics, and image processing}, vol.~44, no.~1, pp. - 87--116, 1988. - -\bibitem{kluge1995deformable} -K.~Kluge and S.~Lakshmanan, ``A deformable-template approach to lane - detection,'' in \emph{Proceedings of the Intelligent Vehicles' 95. - Symposium}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE, 1995, pp. 54--59. - -\bibitem{yolov10} -A.~Wang, H.~Chen, L.~Liu, K.~Chen, Z.~Lin, J.~Han, and G.~Ding, ``Yolov10: - Real-time end-to-end object detection,'' \emph{arXiv preprint - arXiv:2405.14458}, 2024. - -\bibitem{fasterrcnn} -S.~Ren, K.~He, R.~Girshick, and J.~Sun, ``Faster r-cnn: Towards real-time - object detection with region proposal networks,'' \emph{IEEE transactions on - pattern analysis and machine intelligence}, vol.~39, no.~6, pp. 1137--1149, - 2016. - -\bibitem{laneatt} -L.~Tabelini, R.~Berriel, T.~M. Paixao, C.~Badue, A.~F. De~Souza, and - T.~Oliveira-Santos, ``Keep your eyes on the lane: Real-time attention-guided - lane detection,'' in \emph{Proceedings of the IEEE/CVF conference on computer - vision and pattern recognition}, 2021, pp. 294--302. - -\bibitem{clrnet} -T.~Zheng, Y.~Huang, Y.~Liu, W.~Tang, Z.~Yang, D.~Cai, and X.~He, ``Clrnet: - Cross layer refinement network for lane detection,'' in \emph{Proceedings of - the IEEE/CVF conference on computer vision and pattern recognition}, 2022, - pp. 898--907. - -\bibitem{adnet} -L.~Xiao, X.~Li, S.~Yang, and W.~Yang, ``Adnet: Lane shape prediction via anchor - decomposition,'' in \emph{Proceedings of the IEEE/CVF International - Conference on Computer Vision}, 2023, pp. 6404--6413. - -\bibitem{srlane} -C.~Chen, J.~Liu, C.~Zhou, J.~Tang, and G.~Wu, ``Sketch and refine: Towards fast - and accurate lane detection,'' in \emph{Proceedings of the AAAI Conference on - Artificial Intelligence}, vol.~38, no.~2, 2024, pp. 1001--1009. - -\bibitem{clrernet} -H.~Honda and Y.~Uchida, ``Clrernet: improving confidence of lane detection with - laneiou,'' in \emph{Proceedings of the IEEE/CVF Winter Conference on - Applications of Computer Vision}, 2024, pp. 1176--1185. - -\bibitem{tusimple} -\BIBentryALTinterwordspacing -{TuSimple}, ``Tusimple benchmark,'' 2020, accessed: September 2020. [Online]. - Available: \url{https://github.com/TuSimple/tusimple-benchmark/} -\BIBentrySTDinterwordspacing - -\bibitem{scnn} -X.~Pan, J.~Shi, P.~Luo, X.~Wang, and X.~Tang, ``Spatial as deep: Spatial cnn - for traffic scene understanding,'' in \emph{Proceedings of the AAAI - conference on artificial intelligence}, vol.~32, no.~1, 2018. - -\bibitem{llamas} -K.~Behrendt and R.~Soussan, ``Unsupervised labeled lane markers using maps,'' - in \emph{Proceedings of the IEEE/CVF international conference on computer - vision workshops}, 2019, pp. 0--0. - -\bibitem{curvelanes} -H.~Xu, S.~Wang, X.~Cai, W.~Zhang, X.~Liang, and Z.~Li, ``Curvelane-nas: - Unifying lane-sensitive architecture search and adaptive point blending,'' in - \emph{Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, - August 23--28, 2020, Proceedings, Part XV 16}.\hskip 1em plus 0.5em minus - 0.4em\relax Springer, 2020, pp. 689--704. - -\bibitem{dalnet} -Z.~Yu, Q.~Liu, W.~Wang, L.~Zhang, and X.~Zhao, ``Dalnet: A rail detection - network based on dynamic anchor line,'' \emph{IEEE Transactions on - Instrumentation and Measurement}, 2024. - -\bibitem{lanenet} -Z.~Wang, W.~Ren, and Q.~Qiu, ``Lanenet: Real-time lane detection networks for - autonomous driving,'' \emph{arXiv preprint arXiv:1807.01726}, 2018. - -\bibitem{ufld} -Z.~Qin, H.~Wang, and X.~Li, ``Ultra fast structure-aware deep lane detection,'' - in \emph{Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, - August 23--28, 2020, Proceedings, Part XXIV 16}.\hskip 1em plus 0.5em minus - 0.4em\relax Springer, 2020, pp. 276--291. - -\bibitem{ufldv2} -Z.~Qin, P.~Zhang, and X.~Li, ``Ultra fast deep lane detection with hybrid - anchor driven ordinal classification,'' \emph{IEEE transactions on pattern - analysis and machine intelligence}, vol.~46, no.~5, pp. 2555--2568, 2022. - -\bibitem{CondLaneNet} -L.~Liu, X.~Chen, S.~Zhu, and P.~Tan, ``Condlanenet: a top-to-down lane - detection framework based on conditional convolution,'' in \emph{Proceedings - of the IEEE/CVF international conference on computer vision}, 2021, pp. - 3773--3782. - -\bibitem{fololane} -Z.~Qin, P.~Zhang, and X.~Li, ``Ultra fast deep lane detection with hybrid - anchor driven ordinal classification,'' \emph{IEEE transactions on pattern - analysis and machine intelligence}, vol.~46, no.~5, pp. 2555--2568, 2022. - -\bibitem{ganet} -M.~Morley, R.~Atkinson, D.~Savi{\'c}, and G.~Walters, ``Ganet: genetic - algorithm platform for pipe network optimisation,'' \emph{Advances in - engineering software}, vol.~32, no.~6, pp. 467--475, 2001. - -\bibitem{polylanenet} -L.~Tabelini, R.~Berriel, T.~M. Paixao, C.~Badue, A.~F. De~Souza, and - T.~Oliveira-Santos, ``Polylanenet: Lane estimation via deep polynomial - regression,'' in \emph{2020 25th International Conference on Pattern - Recognition (ICPR)}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE, 2021, pp. - 6150--6156. - -\bibitem{lstr} -R.~Liu, Z.~Yuan, T.~Liu, and Z.~Xiong, ``End-to-end lane shape prediction with - transformers,'' in \emph{Proceedings of the IEEE/CVF winter conference on - applications of computer vision}, 2021, pp. 3694--3702. - -\bibitem{bezierlanenet} -Z.~Feng, S.~Guo, X.~Tan, K.~Xu, M.~Wang, and L.~Ma, ``Rethinking efficient lane - detection via curve modeling,'' in \emph{Proceedings of the IEEE/CVF - Conference on Computer Vision and Pattern Recognition}, 2022, pp. - 17\,062--17\,070. - -\bibitem{yolox} -G.~Zheng, L.~Songtao, W.~Feng, L.~Zeming, S.~Jian \emph{et~al.}, ``Yolox: - Exceeding yolo series in 2021,'' \emph{arXiv preprint arXiv:2107.08430}, - 2021. - -\bibitem{sparse} -J.~Liu, Z.~Zhang, M.~Lu, H.~Wei, D.~Li, Y.~Xie, J.~Peng, L.~Tian, A.~Sirasao, - and E.~Barsoum, ``Sparse laneformer,'' \emph{arXiv preprint - arXiv:2404.07821}, 2024. - -\bibitem{detr} -N.~Carion, F.~Massa, G.~Synnaeve, N.~Usunier, A.~Kirillov, and S.~Zagoruyko, - ``End-to-end object detection with transformers,'' in \emph{European - conference on computer vision}.\hskip 1em plus 0.5em minus 0.4em\relax - Springer, 2020, pp. 213--229. - -\bibitem{o2o} -P.~Sun, Y.~Jiang, E.~Xie, W.~Shao, Z.~Yuan, C.~Wang, and P.~Luo, ``What makes - for end-to-end object detection?'' in \emph{International Conference on - Machine Learning}.\hskip 1em plus 0.5em minus 0.4em\relax PMLR, 2021, pp. - 9934--9944. - -\bibitem{learnNMS} -J.~Hosang, R.~Benenson, and B.~Schiele, ``Learning non-maximum suppression,'' - in \emph{Proceedings of the IEEE conference on computer vision and pattern - recognition}, 2017, pp. 4507--4515. - -\bibitem{date} -Y.~Chen, Q.~Chen, Q.~Hu, and J.~Cheng, ``Date: Dual assignment for end-to-end - fully convolutional object detection,'' \emph{arXiv preprint - arXiv:2211.13859}, 2022. - -\bibitem{o3d} -J.~Wang, L.~Song, Z.~Li, H.~Sun, J.~Sun, and N.~Zheng, ``End-to-end object - detection with fully convolutional network,'' in \emph{Proceedings of the - IEEE/CVF conference on computer vision and pattern recognition}, 2021, pp. - 15\,849--15\,858. - -\bibitem{relationnet} -H.~Hu, J.~Gu, Z.~Zhang, J.~Dai, and Y.~Wei, ``Relation networks for object - detection,'' in \emph{Proceedings of the IEEE conference on computer vision - and pattern recognition}, 2018, pp. 3588--3597. - -\bibitem{linecnn} -X.~Li, J.~Li, X.~Hu, and J.~Yang, ``Line-cnn: End-to-end traffic line detection - with line proposal unit,'' \emph{IEEE Transactions on Intelligent - Transportation Systems}, vol.~21, no.~1, pp. 248--258, 2019. - -\bibitem{vil100} -Y.~Zhang, L.~Zhu, W.~Feng, H.~Fu, M.~Wang, Q.~Li, C.~Li, and S.~Wang, - ``Vil-100: A new dataset and a baseline model for video instance lane - detection,'' in \emph{Proceedings of the IEEE/CVF international conference on - computer vision}, 2021, pp. 15\,681--15\,690. - -\bibitem{xu2022overview} -Z.-Q.~J. Xu, Y.~Zhang, and T.~Luo, ``Overview frequency principle/spectral bias - in deep learning,'' \emph{arXiv preprint arXiv:2201.07395}, 2022. - -\bibitem{stewart2016end} -R.~Stewart, M.~Andriluka, and A.~Y. Ng, ``End-to-end people detection in - crowded scenes,'' in \emph{Proceedings of the IEEE conference on computer - vision and pattern recognition}, 2016, pp. 2325--2333. - -\bibitem{yolact} -D.~Bolya, C.~Zhou, F.~Xiao, and Y.~J. Lee, ``Yolact: Real-time instance - segmentation,'' in \emph{Proceedings of the IEEE/CVF international conference - on computer vision}, 2019, pp. 9157--9166. - -\bibitem{alemi2016deep} -A.~A. Alemi, I.~Fischer, J.~V. Dillon, and K.~Murphy, ``Deep variational - information bottleneck,'' \emph{arXiv preprint arXiv:1612.00410}, 2016. - -\bibitem{iouloss} -J.~Yu, Y.~Jiang, Z.~Wang, Z.~Cao, and T.~Huang, ``Unitbox: An advanced object - detection network,'' in \emph{Proceedings of the 24th ACM international - conference on Multimedia}, 2016, pp. 516--520. - -\bibitem{giouloss} -H.~Rezatofighi, N.~Tsoi, J.~Gwak, A.~Sadeghian, I.~Reid, and S.~Savarese, - ``Generalized intersection over union: A metric and a loss for bounding box - regression,'' in \emph{Proceedings of the IEEE/CVF conference on computer - vision and pattern recognition}, 2019, pp. 658--666. - -\bibitem{focal} -T.-Y. Lin, P.~Goyal, R.~Girshick, K.~He, and P.~Doll{\'a}r, ``Focal loss for - dense object detection,'' in \emph{Proceedings of the IEEE international - conference on computer vision}, 2017, pp. 2980--2988. - -\bibitem{pss} -Q.~Zhou and C.~Yu, ``Object detection made simpler by eliminating heuristic - nms,'' \emph{IEEE Transactions on Multimedia}, vol.~25, pp. 9254--9262, 2023. - -\bibitem{adam} -D.~P. Kingma, ``Adam: A method for stochastic optimization,'' \emph{arXiv - preprint arXiv:1412.6980}, 2014. - -\bibitem{resnet} -K.~He, X.~Zhang, S.~Ren, and J.~Sun, ``Deep residual learning for image - recognition,'' in \emph{Proceedings of the IEEE conference on computer vision - and pattern recognition}, 2016, pp. 770--778. - -\bibitem{dla} -F.~Yu, D.~Wang, E.~Shelhamer, and T.~Darrell, ``Deep layer aggregation,'' in - \emph{Proceedings of the IEEE conference on computer vision and pattern - recognition}, 2018, pp. 2403--2412. - -\bibitem{resa} -T.~Zheng, H.~Fang, Y.~Zhang, W.~Tang, Z.~Yang, H.~Liu, and D.~Cai, ``Resa: - Recurrent feature-shift aggregator for lane detection,'' in \emph{Proceedings - of the AAAI conference on artificial intelligence}, vol.~35, no.~4, 2021, pp. - 3547--3554. - -\bibitem{laneaf} -H.~Abualsaud, S.~Liu, D.~B. Lu, K.~Situ, A.~Rangesh, and M.~M. Trivedi, - ``Laneaf: Robust multi-lane detection with affinity fields,'' \emph{IEEE - Robotics and Automation Letters}, vol.~6, no.~4, pp. 7477--7484, 2021. - -\bibitem{bsnet} -H.~Chen, M.~Wang, and Y.~Liu, ``Bsnet: Lane detection via draw b-spline curves - nearby,'' \emph{arXiv preprint arXiv:2301.06910}, 2023. - -\bibitem{eigenlanes} -D.~Jin, W.~Park, S.-G. Jeong, H.~Kwon, and C.-S. Kim, ``Eigenlanes: Data-driven - lane descriptors for structurally diverse lanes,'' in \emph{Proceedings of - the IEEE/CVF conference on computer vision and pattern recognition}, 2022, - pp. 17\,163--17\,171. - -\bibitem{enetsad} -Y.~Hou, Z.~Ma, C.~Liu, and C.~C. Loy, ``Learning lightweight lane detection - cnns by self attention distillation,'' in \emph{Proceedings of the IEEE/CVF - international conference on computer vision}, 2019, pp. 1013--1021. - -\bibitem{pointlanenet} -Z.~Chen, Q.~Liu, and C.~Lian, ``Pointlanenet: Efficient end-to-end cnns for - accurate real-time lane detection,'' in \emph{2019 IEEE intelligent vehicles - symposium (IV)}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE, 2019, pp. - 2563--2568. - -\end{thebibliography}