diff --git a/reference.bib b/reference.bib new file mode 100644 index 0000000..a2d0835 --- /dev/null +++ b/reference.bib @@ -0,0 +1,427 @@ +@article{houghtransform, + title={A survey of the Hough transform}, + author={Illingworth, John and Kittler, Josef}, + journal={Computer vision, graphics, and image processing}, + volume={44}, + number={1}, + pages={87--116}, + year={1988}, + publisher={Elsevier} +} + +@article{cannyedge, + title={A computational approach to edge detection}, + author={Canny, John}, + journal={IEEE Transactions on pattern analysis and machine intelligence}, + number={6}, + pages={679--698}, + year={1986}, + publisher={IEEE} +} + +@inproceedings{kluge1995deformable, + title={A deformable-template approach to lane detection}, + author={Kluge, Karl and Lakshmanan, Sridhar}, + booktitle={Proceedings of the Intelligent Vehicles' 95. Symposium}, + pages={54--59}, + year={1995}, + organization={IEEE} +} + + +@article{yolov10, + title={Yolov10: Real-time end-to-end object detection}, + author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang}, + journal={arXiv preprint arXiv:2405.14458}, + year={2024} +} + +@article{fasterrcnn, + title={Faster R-CNN: Towards real-time object detection with region proposal networks}, + author={Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian}, + journal={IEEE transactions on pattern analysis and machine intelligence}, + volume={39}, + number={6}, + pages={1137--1149}, + year={2016}, + publisher={IEEE} +} + +@inproceedings{clrnet, + title={Clrnet: Cross layer refinement network for lane detection}, + author={Zheng, Tu and Huang, Yifei and Liu, Yang and Tang, Wenjian and Yang, Zheng and Cai, Deng and He, Xiaofei}, + booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, + pages={898--907}, + year={2022} +} + +@inproceedings{clrernet, + title={CLRerNet: improving confidence of lane detection with LaneIoU}, + author={Honda, Hiroto and Uchida, Yusuke}, + booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision}, + pages={1176--1185}, + year={2024} +} + + +@inproceedings{laneatt, + title={Keep your eyes on the lane: Real-time attention-guided lane detection}, + author={Tabelini, Lucas and Berriel, Rodrigo and Paixao, Thiago M and Badue, Claudine and De Souza, Alberto F and Oliveira-Santos, Thiago}, + booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, + pages={294--302}, + year={2021} +} + +@inproceedings{adnet, + title={Adnet: Lane shape prediction via anchor decomposition}, + author={Xiao, Lingyu and Li, Xiang and Yang, Sen and Yang, Wankou}, + booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, + pages={6404--6413}, + year={2023} +} + +@inproceedings{srlane, + title={Sketch and Refine: Towards Fast and Accurate Lane Detection}, + author={Chen, Chao and Liu, Jie and Zhou, Chang and Tang, Jie and Wu, Gangshan}, + booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, + volume={38}, + number={2}, + pages={1001--1009}, + year={2024} +} + + +@misc{tusimple, + author = {{TuSimple}}, + title = {TuSimple Benchmark}, + year = {2020}, + url = {https://github.com/TuSimple/tusimple-benchmark/}, + note = {Accessed: September 2020} +} + +@inproceedings{scnn, + title={Spatial as deep: Spatial cnn for traffic scene understanding}, + author={Pan, Xingang and Shi, Jianping and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou}, + booktitle={Proceedings of the AAAI conference on artificial intelligence}, + volume={32}, + number={1}, + year={2018} +} + +@inproceedings{curvelanes, + title={Curvelane-nas: Unifying lane-sensitive architecture search and adaptive point blending}, + author={Xu, Hang and Wang, Shaoju and Cai, Xinyue and Zhang, Wei and Liang, Xiaodan and Li, Zhenguo}, + booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XV 16}, + pages={689--704}, + year={2020}, + organization={Springer} +} + +@inproceedings{llamas, + title={Unsupervised labeled lane markers using maps}, + author={Behrendt, Karsten and Soussan, Ryan}, + booktitle={Proceedings of the IEEE/CVF international conference on computer vision workshops}, + pages={0--0}, + year={2019} +} + +@article{dalnet, + title={DALNet: A rail detection network based on dynamic anchor line}, + author={Yu, Zichen and Liu, Quanli and Wang, Wei and Zhang, Liyong and Zhao, Xiaoguang}, + journal={IEEE Transactions on Instrumentation and Measurement}, + year={2024}, + publisher={IEEE} +} + +@article{lanenet, + title={Lanenet: Real-time lane detection networks for autonomous driving}, + author={Wang, Ze and Ren, Weiqiang and Qiu, Qiang}, + journal={arXiv preprint arXiv:1807.01726}, + year={2018} +} + +@inproceedings{condlanenet, + title={Condlanenet: a top-to-down lane detection framework based on conditional convolution}, + author={Liu, Lizhe and Chen, Xiaohao and Zhu, Siyu and Tan, Ping}, + booktitle={Proceedings of the IEEE/CVF international conference on computer vision}, + pages={3773--3782}, + year={2021} +} + +@inproceedings{ufld, + title={Ultra fast structure-aware deep lane detection}, + author={Qin, Zequn and Wang, Huanyu and Li, Xi}, + booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XXIV 16}, + pages={276--291}, + year={2020}, + organization={Springer} +} + +@article{ufldv2, + title={Ultra fast deep lane detection with hybrid anchor driven ordinal classification}, + author={Qin, Zequn and Zhang, Pengyi and Li, Xi}, + journal={IEEE transactions on pattern analysis and machine intelligence}, + volume={46}, + number={5}, + pages={2555--2568}, + year={2022}, + publisher={IEEE} +} + +@article{fololane, + title={Ultra fast deep lane detection with hybrid anchor driven ordinal classification}, + author={Qin, Zequn and Zhang, Pengyi and Li, Xi}, + journal={IEEE transactions on pattern analysis and machine intelligence}, + volume={46}, + number={5}, + pages={2555--2568}, + year={2022}, + publisher={IEEE} +} + +@article{ganet, + title={GAnet: genetic algorithm platform for pipe network optimisation}, + author={Morley, MS and Atkinson, RM and Savi{\'c}, DA and Walters, GA}, + journal={Advances in engineering software}, + volume={32}, + number={6}, + pages={467--475}, + year={2001}, + publisher={Elsevier} +} + +@inproceedings{polylanenet, + title={Polylanenet: Lane estimation via deep polynomial regression}, + author={Tabelini, Lucas and Berriel, Rodrigo and Paixao, Thiago M and Badue, Claudine and De Souza, Alberto F and Oliveira-Santos, Thiago}, + booktitle={2020 25th International Conference on Pattern Recognition (ICPR)}, + pages={6150--6156}, + year={2021}, + organization={IEEE} +} + +@inproceedings{bezierlanenet, + title={Rethinking efficient lane detection via curve modeling}, + author={Feng, Zhengyang and Guo, Shaohua and Tan, Xin and Xu, Ke and Wang, Min and Ma, Lizhuang}, + booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + pages={17062--17070}, + year={2022} +} + + +@article{yolox, + title={YOLOX: Exceeding YOLO series in 2021}, + author={Zheng, Ge and Songtao, Liu and Feng, Wang and Zeming, Li and Jian, Sun and others}, + journal={arXiv preprint arXiv:2107.08430}, + year={2021}, + publisher={arXiv} +} + +@inproceedings{lstr, + title={End-to-end lane shape prediction with transformers}, + author={Liu, Ruijin and Yuan, Zejian and Liu, Tie and Xiong, Zhiliang}, + booktitle={Proceedings of the IEEE/CVF winter conference on applications of computer vision}, + pages={3694--3702}, + year={2021} +} + +@inproceedings{detr, + title={End-to-end object detection with transformers}, + author={Carion, Nicolas and Massa, Francisco and Synnaeve, Gabriel and Usunier, Nicolas and Kirillov, Alexander and Zagoruyko, Sergey}, + booktitle={European conference on computer vision}, + pages={213--229}, + year={2020}, + organization={Springer} +} + +@inproceedings{o2o, + title={What makes for end-to-end object detection?}, + author={Sun, Peize and Jiang, Yi and Xie, Enze and Shao, Wenqi and Yuan, Zehuan and Wang, Changhu and Luo, Ping}, + booktitle={International Conference on Machine Learning}, + pages={9934--9944}, + year={2021}, + organization={PMLR} +} + +@inproceedings{relationnet, + title={Relation networks for object detection}, + author={Hu, Han and Gu, Jiayuan and Zhang, Zheng and Dai, Jifeng and Wei, Yichen}, + booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, + pages={3588--3597}, + year={2018} +} + +@article{date, + title={Date: Dual assignment for end-to-end fully convolutional object detection}, + author={Chen, Yiqun and Chen, Qiang and Hu, Qinghao and Cheng, Jian}, + journal={arXiv preprint arXiv:2211.13859}, + year={2022} +} + +@inproceedings{o3d, + title={End-to-end object detection with fully convolutional network}, + author={Wang, Jianfeng and Song, Lin and Li, Zeming and Sun, Hongbin and Sun, Jian and Zheng, Nanning}, + booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, + pages={15849--15858}, + year={2021} +} + +@inproceedings{learnnms, + title={Learning non-maximum suppression}, + author={Hosang, Jan and Benenson, Rodrigo and Schiele, Bernt}, + booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, + pages={4507--4515}, + year={2017} +} + + +@article{linecnn, + title={Line-cnn: End-to-end traffic line detection with line proposal unit}, + author={Li, Xiang and Li, Jun and Hu, Xiaolin and Yang, Jian}, + journal={IEEE Transactions on Intelligent Transportation Systems}, + volume={21}, + number={1}, + pages={248--258}, + year={2019}, + publisher={IEEE} +} + +@article{sparse, + title={Sparse Laneformer}, + author={Liu, Ji and Zhang, Zifeng and Lu, Mingjie and Wei, Hongyang and Li, Dong and Xie, Yile and Peng, Jinzhang and Tian, Lu and Sirasao, Ashish and Barsoum, Emad}, + journal={arXiv preprint arXiv:2404.07821}, + year={2024} +} + +@inproceedings{vil100, + title={Vil-100: A new dataset and a baseline model for video instance lane detection}, + author={Zhang, Yujun and Zhu, Lei and Feng, Wei and Fu, Huazhu and Wang, Mingqian and Li, Qingxia and Li, Cheng and Wang, Song}, + booktitle={Proceedings of the IEEE/CVF international conference on computer vision}, + pages={15681--15690}, + year={2021} +} + +@article{xu2022overview, + title={Overview frequency principle/spectral bias in deep learning}, + author={Xu, Zhi-Qin John and Zhang, Yaoyu and Luo, Tao}, + journal={arXiv preprint arXiv:2201.07395}, + year={2022} +} + +@inproceedings{stewart2016end, + title={End-to-end people detection in crowded scenes}, + author={Stewart, Russell and Andriluka, Mykhaylo and Ng, Andrew Y}, + booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, + pages={2325--2333}, + year={2016} +} + + +@inproceedings{yolact, + title={Yolact: Real-time instance segmentation}, + author={Bolya, Daniel and Zhou, Chong and Xiao, Fanyi and Lee, Yong Jae}, + booktitle={Proceedings of the IEEE/CVF international conference on computer vision}, + pages={9157--9166}, + year={2019} +} + +@article{alemi2016deep, + title={Deep variational information bottleneck}, + author={Alemi, Alexander A and Fischer, Ian and Dillon, Joshua V and Murphy, Kevin}, + journal={arXiv preprint arXiv:1612.00410}, + year={2016} +} + +@inproceedings{focal, + title={Focal loss for dense object detection}, + author={Lin, Tsung-Yi and Goyal, Priya and Girshick, Ross and He, Kaiming and Doll{\'a}r, Piotr}, + booktitle={Proceedings of the IEEE international conference on computer vision}, + pages={2980--2988}, + year={2017} +} + +@inproceedings{resnet, + title={Deep residual learning for image recognition}, + author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian}, + booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, + pages={770--778}, + year={2016} +} + +@article{adam, + title={Adam: A method for stochastic optimization}, + author={Kingma, Diederik P}, + journal={arXiv preprint arXiv:1412.6980}, + year={2014} +} + +@inproceedings{dla, + title={Deep layer aggregation}, + author={Yu, Fisher and Wang, Dequan and Shelhamer, Evan and Darrell, Trevor}, + booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, + pages={2403--2412}, + year={2018} +} + +@inproceedings{resa, + title={Resa: Recurrent feature-shift aggregator for lane detection}, + author={Zheng, Tu and Fang, Hao and Zhang, Yi and Tang, Wenjian and Yang, Zheng and Liu, Haifeng and Cai, Deng}, + booktitle={Proceedings of the AAAI conference on artificial intelligence}, + volume={35}, + number={4}, + pages={3547--3554}, + year={2021} +} + +@article{bsnet, + title={Bsnet: Lane detection via draw b-spline curves nearby}, + author={Chen, Haoxin and Wang, Mengmeng and Liu, Yong}, + journal={arXiv preprint arXiv:2301.06910}, + year={2023} +} + +@inproceedings{eigenlanes, + title={Eigenlanes: Data-driven lane descriptors for structurally diverse lanes}, + author={Jin, Dongkwon and Park, Wonhui and Jeong, Seong-Gyun and Kwon, Heeyeon and Kim, Chang-Su}, + booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, + pages={17163--17171}, + year={2022} +} + +@article{laneaf, + title={Laneaf: Robust multi-lane detection with affinity fields}, + author={Abualsaud, Hala and Liu, Sean and Lu, David B and Situ, Kenny and Rangesh, Akshay and Trivedi, Mohan M}, + journal={IEEE Robotics and Automation Letters}, + volume={6}, + number={4}, + pages={7477--7484}, + year={2021}, + publisher={IEEE} +} + +@inproceedings{enetsad, + title={Learning lightweight lane detection cnns by self attention distillation}, + author={Hou, Yuenan and Ma, Zheng and Liu, Chunxiao and Loy, Chen Change}, + booktitle={Proceedings of the IEEE/CVF international conference on computer vision}, + pages={1013--1021}, + year={2019} +} + +@inproceedings{pointlanenet, + title={Pointlanenet: Efficient end-to-end cnns for accurate real-time lane detection}, + author={Chen, Zhenpeng and Liu, Qianfei and Lian, Chenfan}, + booktitle={2019 IEEE intelligent vehicles symposium (IV)}, + pages={2563--2568}, + year={2019}, + organization={IEEE} +} + + +@article{pss, + title={Object detection made simpler by eliminating heuristic NMS}, + author={Zhou, Qiang and Yu, Chaohui}, + journal={IEEE Transactions on Multimedia}, + volume={25}, + pages={9254--9262}, + year={2023}, + publisher={IEEE} +} \ No newline at end of file