2024-08-07 12:35:26 +08:00
|
|
|
% Generated by IEEEtran.bst, version: 1.14 (2015/08/26)
|
2024-09-03 09:51:23 +08:00
|
|
|
\begin{thebibliography}{10}
|
2024-08-07 12:35:26 +08:00
|
|
|
\providecommand{\url}[1]{#1}
|
|
|
|
\csname url@samestyle\endcsname
|
|
|
|
\providecommand{\newblock}{\relax}
|
|
|
|
\providecommand{\bibinfo}[2]{#2}
|
|
|
|
\providecommand{\BIBentrySTDinterwordspacing}{\spaceskip=0pt\relax}
|
|
|
|
\providecommand{\BIBentryALTinterwordstretchfactor}{4}
|
|
|
|
\providecommand{\BIBentryALTinterwordspacing}{\spaceskip=\fontdimen2\font plus
|
|
|
|
\BIBentryALTinterwordstretchfactor\fontdimen3\font minus
|
|
|
|
\fontdimen4\font\relax}
|
|
|
|
\providecommand{\BIBforeignlanguage}[2]{{%
|
|
|
|
\expandafter\ifx\csname l@#1\endcsname\relax
|
|
|
|
\typeout{** WARNING: IEEEtran.bst: No hyphenation pattern has been}%
|
|
|
|
\typeout{** loaded for the language `#1'. Using the pattern for}%
|
|
|
|
\typeout{** the default language instead.}%
|
|
|
|
\else
|
|
|
|
\language=\csname l@#1\endcsname
|
|
|
|
\fi
|
|
|
|
#2}}
|
|
|
|
\providecommand{\BIBdecl}{\relax}
|
|
|
|
\BIBdecl
|
|
|
|
|
2024-09-03 09:51:23 +08:00
|
|
|
\bibitem{cannyedge}
|
2024-08-07 12:35:26 +08:00
|
|
|
J.~Canny, ``A computational approach to edge detection,'' \emph{IEEE
|
|
|
|
Transactions on pattern analysis and machine intelligence}, no.~6, pp.
|
|
|
|
679--698, 1986.
|
|
|
|
|
|
|
|
\bibitem{houghtransform}
|
|
|
|
J.~Illingworth and J.~Kittler, ``A survey of the hough transform,''
|
|
|
|
\emph{Computer vision, graphics, and image processing}, vol.~44, no.~1, pp.
|
|
|
|
87--116, 1988.
|
|
|
|
|
|
|
|
\bibitem{kluge1995deformable}
|
|
|
|
K.~Kluge and S.~Lakshmanan, ``A deformable-template approach to lane
|
|
|
|
detection,'' in \emph{Proceedings of the Intelligent Vehicles' 95.
|
|
|
|
Symposium}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE, 1995, pp. 54--59.
|
|
|
|
|
2024-09-03 09:51:23 +08:00
|
|
|
\bibitem{yolov10}
|
|
|
|
A.~Wang, H.~Chen, L.~Liu, K.~Chen, Z.~Lin, J.~Han, and G.~Ding, ``Yolov10:
|
|
|
|
Real-time end-to-end object detection,'' \emph{arXiv preprint
|
|
|
|
arXiv:2405.14458}, 2024.
|
|
|
|
|
|
|
|
\bibitem{fasterrcnn}
|
|
|
|
S.~Ren, K.~He, R.~Girshick, and J.~Sun, ``Faster r-cnn: Towards real-time
|
|
|
|
object detection with region proposal networks,'' \emph{IEEE transactions on
|
|
|
|
pattern analysis and machine intelligence}, vol.~39, no.~6, pp. 1137--1149,
|
|
|
|
2016.
|
|
|
|
|
|
|
|
\bibitem{laneatt}
|
|
|
|
L.~Tabelini, R.~Berriel, T.~M. Paixao, C.~Badue, A.~F. De~Souza, and
|
|
|
|
T.~Oliveira-Santos, ``Keep your eyes on the lane: Real-time attention-guided
|
|
|
|
lane detection,'' in \emph{Proceedings of the IEEE/CVF conference on computer
|
|
|
|
vision and pattern recognition}, 2021, pp. 294--302.
|
|
|
|
|
|
|
|
\bibitem{clrnet}
|
|
|
|
T.~Zheng, Y.~Huang, Y.~Liu, W.~Tang, Z.~Yang, D.~Cai, and X.~He, ``Clrnet:
|
|
|
|
Cross layer refinement network for lane detection,'' in \emph{Proceedings of
|
|
|
|
the IEEE/CVF conference on computer vision and pattern recognition}, 2022,
|
|
|
|
pp. 898--907.
|
|
|
|
|
|
|
|
\bibitem{adnet}
|
|
|
|
L.~Xiao, X.~Li, S.~Yang, and W.~Yang, ``Adnet: Lane shape prediction via anchor
|
|
|
|
decomposition,'' in \emph{Proceedings of the IEEE/CVF International
|
|
|
|
Conference on Computer Vision}, 2023, pp. 6404--6413.
|
|
|
|
|
|
|
|
\bibitem{srlane}
|
|
|
|
C.~Chen, J.~Liu, C.~Zhou, J.~Tang, and G.~Wu, ``Sketch and refine: Towards fast
|
|
|
|
and accurate lane detection,'' in \emph{Proceedings of the AAAI Conference on
|
|
|
|
Artificial Intelligence}, vol.~38, no.~2, 2024, pp. 1001--1009.
|
|
|
|
|
|
|
|
\bibitem{tusimple}
|
|
|
|
\BIBentryALTinterwordspacing
|
|
|
|
{TuSimple}, ``Tusimple benchmark,'' 2020, accessed: September 2020. [Online].
|
|
|
|
Available: \url{https://github.com/TuSimple/tusimple-benchmark/}
|
|
|
|
\BIBentrySTDinterwordspacing
|
|
|
|
|
|
|
|
\bibitem{scnn}
|
|
|
|
X.~Pan, J.~Shi, P.~Luo, X.~Wang, and X.~Tang, ``Spatial as deep: Spatial cnn
|
|
|
|
for traffic scene understanding,'' in \emph{Proceedings of the AAAI
|
|
|
|
conference on artificial intelligence}, vol.~32, no.~1, 2018.
|
|
|
|
|
|
|
|
\bibitem{llamas}
|
|
|
|
K.~Behrendt and R.~Soussan, ``Unsupervised labeled lane markers using maps,''
|
|
|
|
in \emph{Proceedings of the IEEE/CVF international conference on computer
|
|
|
|
vision workshops}, 2019, pp. 0--0.
|
|
|
|
|
|
|
|
\bibitem{curvelanes}
|
|
|
|
H.~Xu, S.~Wang, X.~Cai, W.~Zhang, X.~Liang, and Z.~Li, ``Curvelane-nas:
|
|
|
|
Unifying lane-sensitive architecture search and adaptive point blending,'' in
|
|
|
|
\emph{Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK,
|
|
|
|
August 23--28, 2020, Proceedings, Part XV 16}.\hskip 1em plus 0.5em minus
|
|
|
|
0.4em\relax Springer, 2020, pp. 689--704.
|
|
|
|
|
|
|
|
\bibitem{dalnet}
|
|
|
|
Z.~Yu, Q.~Liu, W.~Wang, L.~Zhang, and X.~Zhao, ``Dalnet: A rail detection
|
|
|
|
network based on dynamic anchor line,'' \emph{IEEE Transactions on
|
|
|
|
Instrumentation and Measurement}, 2024.
|
|
|
|
|
|
|
|
\bibitem{lanenet}
|
|
|
|
Z.~Wang, W.~Ren, and Q.~Qiu, ``Lanenet: Real-time lane detection networks for
|
|
|
|
autonomous driving,'' \emph{arXiv preprint arXiv:1807.01726}, 2018.
|
|
|
|
|
|
|
|
\bibitem{ufld}
|
|
|
|
Z.~Qin, H.~Wang, and X.~Li, ``Ultra fast structure-aware deep lane detection,''
|
|
|
|
in \emph{Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK,
|
|
|
|
August 23--28, 2020, Proceedings, Part XXIV 16}.\hskip 1em plus 0.5em minus
|
|
|
|
0.4em\relax Springer, 2020, pp. 276--291.
|
|
|
|
|
|
|
|
\bibitem{ufldv2}
|
|
|
|
Z.~Qin, P.~Zhang, and X.~Li, ``Ultra fast deep lane detection with hybrid
|
|
|
|
anchor driven ordinal classification,'' \emph{IEEE transactions on pattern
|
|
|
|
analysis and machine intelligence}, vol.~46, no.~5, pp. 2555--2568, 2022.
|
|
|
|
|
|
|
|
\bibitem{condlanenet}
|
|
|
|
L.~Liu, X.~Chen, S.~Zhu, and P.~Tan, ``Condlanenet: a top-to-down lane
|
|
|
|
detection framework based on conditional convolution,'' in \emph{Proceedings
|
|
|
|
of the IEEE/CVF international conference on computer vision}, 2021, pp.
|
|
|
|
3773--3782.
|
|
|
|
|
|
|
|
\bibitem{fololane}
|
|
|
|
Z.~Qin, P.~Zhang, and X.~Li, ``Ultra fast deep lane detection with hybrid
|
|
|
|
anchor driven ordinal classification,'' \emph{IEEE transactions on pattern
|
|
|
|
analysis and machine intelligence}, vol.~46, no.~5, pp. 2555--2568, 2022.
|
|
|
|
|
|
|
|
\bibitem{ganet}
|
|
|
|
M.~Morley, R.~Atkinson, D.~Savi{\'c}, and G.~Walters, ``Ganet: genetic
|
|
|
|
algorithm platform for pipe network optimisation,'' \emph{Advances in
|
|
|
|
engineering software}, vol.~32, no.~6, pp. 467--475, 2001.
|
|
|
|
|
|
|
|
\bibitem{polylanenet}
|
|
|
|
L.~Tabelini, R.~Berriel, T.~M. Paixao, C.~Badue, A.~F. De~Souza, and
|
|
|
|
T.~Oliveira-Santos, ``Polylanenet: Lane estimation via deep polynomial
|
|
|
|
regression,'' in \emph{2020 25th International Conference on Pattern
|
|
|
|
Recognition (ICPR)}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE, 2021, pp.
|
|
|
|
6150--6156.
|
|
|
|
|
|
|
|
\bibitem{lstr}
|
|
|
|
R.~Liu, Z.~Yuan, T.~Liu, and Z.~Xiong, ``End-to-end lane shape prediction with
|
|
|
|
transformers,'' in \emph{Proceedings of the IEEE/CVF winter conference on
|
|
|
|
applications of computer vision}, 2021, pp. 3694--3702.
|
|
|
|
|
|
|
|
\bibitem{bezierlanenet}
|
|
|
|
Z.~Feng, S.~Guo, X.~Tan, K.~Xu, M.~Wang, and L.~Ma, ``Rethinking efficient lane
|
|
|
|
detection via curve modeling,'' in \emph{Proceedings of the IEEE/CVF
|
|
|
|
Conference on Computer Vision and Pattern Recognition}, 2022, pp.
|
|
|
|
17\,062--17\,070.
|
|
|
|
|
|
|
|
\bibitem{yolox}
|
|
|
|
G.~Zheng, L.~Songtao, W.~Feng, L.~Zeming, S.~Jian \emph{et~al.}, ``Yolox:
|
|
|
|
Exceeding yolo series in 2021,'' \emph{arXiv preprint arXiv:2107.08430},
|
|
|
|
2021.
|
|
|
|
|
|
|
|
\bibitem{sparse}
|
|
|
|
J.~Liu, Z.~Zhang, M.~Lu, H.~Wei, D.~Li, Y.~Xie, J.~Peng, L.~Tian, A.~Sirasao,
|
|
|
|
and E.~Barsoum, ``Sparse laneformer,'' \emph{arXiv preprint
|
|
|
|
arXiv:2404.07821}, 2024.
|
|
|
|
|
|
|
|
\bibitem{clrernet}
|
|
|
|
H.~Honda and Y.~Uchida, ``Clrernet: improving confidence of lane detection with
|
|
|
|
laneiou,'' in \emph{Proceedings of the IEEE/CVF Winter Conference on
|
|
|
|
Applications of Computer Vision}, 2024, pp. 1176--1185.
|
|
|
|
|
|
|
|
\bibitem{detr}
|
|
|
|
N.~Carion, F.~Massa, G.~Synnaeve, N.~Usunier, A.~Kirillov, and S.~Zagoruyko,
|
|
|
|
``End-to-end object detection with transformers,'' in \emph{European
|
|
|
|
conference on computer vision}.\hskip 1em plus 0.5em minus 0.4em\relax
|
|
|
|
Springer, 2020, pp. 213--229.
|
|
|
|
|
|
|
|
\bibitem{o2o}
|
|
|
|
P.~Sun, Y.~Jiang, E.~Xie, W.~Shao, Z.~Yuan, C.~Wang, and P.~Luo, ``What makes
|
|
|
|
for end-to-end object detection?'' in \emph{International Conference on
|
|
|
|
Machine Learning}.\hskip 1em plus 0.5em minus 0.4em\relax PMLR, 2021, pp.
|
|
|
|
9934--9944.
|
|
|
|
|
|
|
|
\bibitem{learnnms}
|
|
|
|
J.~Hosang, R.~Benenson, and B.~Schiele, ``Learning non-maximum suppression,''
|
|
|
|
in \emph{Proceedings of the IEEE conference on computer vision and pattern
|
|
|
|
recognition}, 2017, pp. 4507--4515.
|
|
|
|
|
|
|
|
\bibitem{date}
|
|
|
|
Y.~Chen, Q.~Chen, Q.~Hu, and J.~Cheng, ``Date: Dual assignment for end-to-end
|
|
|
|
fully convolutional object detection,'' \emph{arXiv preprint
|
|
|
|
arXiv:2211.13859}, 2022.
|
|
|
|
|
|
|
|
\bibitem{o3d}
|
|
|
|
J.~Wang, L.~Song, Z.~Li, H.~Sun, J.~Sun, and N.~Zheng, ``End-to-end object
|
|
|
|
detection with fully convolutional network,'' in \emph{Proceedings of the
|
|
|
|
IEEE/CVF conference on computer vision and pattern recognition}, 2021, pp.
|
|
|
|
15\,849--15\,858.
|
|
|
|
|
|
|
|
\bibitem{relationnet}
|
|
|
|
H.~Hu, J.~Gu, Z.~Zhang, J.~Dai, and Y.~Wei, ``Relation networks for object
|
|
|
|
detection,'' in \emph{Proceedings of the IEEE conference on computer vision
|
|
|
|
and pattern recognition}, 2018, pp. 3588--3597.
|
|
|
|
|
|
|
|
\bibitem{linecnn}
|
|
|
|
X.~Li, J.~Li, X.~Hu, and J.~Yang, ``Line-cnn: End-to-end traffic line detection
|
|
|
|
with line proposal unit,'' \emph{IEEE Transactions on Intelligent
|
|
|
|
Transportation Systems}, vol.~21, no.~1, pp. 248--258, 2019.
|
|
|
|
|
|
|
|
\bibitem{vil100}
|
|
|
|
Y.~Zhang, L.~Zhu, W.~Feng, H.~Fu, M.~Wang, Q.~Li, C.~Li, and S.~Wang,
|
|
|
|
``Vil-100: A new dataset and a baseline model for video instance lane
|
|
|
|
detection,'' in \emph{Proceedings of the IEEE/CVF international conference on
|
|
|
|
computer vision}, 2021, pp. 15\,681--15\,690.
|
|
|
|
|
|
|
|
\bibitem{xu2022overview}
|
|
|
|
Z.-Q.~J. Xu, Y.~Zhang, and T.~Luo, ``Overview frequency principle/spectral bias
|
|
|
|
in deep learning,'' \emph{arXiv preprint arXiv:2201.07395}, 2022.
|
|
|
|
|
|
|
|
\bibitem{stewart2016end}
|
|
|
|
R.~Stewart, M.~Andriluka, and A.~Y. Ng, ``End-to-end people detection in
|
|
|
|
crowded scenes,'' in \emph{Proceedings of the IEEE conference on computer
|
|
|
|
vision and pattern recognition}, 2016, pp. 2325--2333.
|
|
|
|
|
|
|
|
\bibitem{yolact}
|
|
|
|
D.~Bolya, C.~Zhou, F.~Xiao, and Y.~J. Lee, ``Yolact: Real-time instance
|
|
|
|
segmentation,'' in \emph{Proceedings of the IEEE/CVF international conference
|
|
|
|
on computer vision}, 2019, pp. 9157--9166.
|
|
|
|
|
|
|
|
\bibitem{alemi2016deep}
|
|
|
|
A.~A. Alemi, I.~Fischer, J.~V. Dillon, and K.~Murphy, ``Deep variational
|
|
|
|
information bottleneck,'' \emph{arXiv preprint arXiv:1612.00410}, 2016.
|
|
|
|
|
|
|
|
\bibitem{focal}
|
|
|
|
T.-Y. Lin, P.~Goyal, R.~Girshick, K.~He, and P.~Doll{\'a}r, ``Focal loss for
|
|
|
|
dense object detection,'' in \emph{Proceedings of the IEEE international
|
|
|
|
conference on computer vision}, 2017, pp. 2980--2988.
|
|
|
|
|
|
|
|
\bibitem{pss}
|
|
|
|
Q.~Zhou and C.~Yu, ``Object detection made simpler by eliminating heuristic
|
|
|
|
nms,'' \emph{IEEE Transactions on Multimedia}, vol.~25, pp. 9254--9262, 2023.
|
|
|
|
|
|
|
|
\bibitem{adam}
|
|
|
|
D.~P. Kingma, ``Adam: A method for stochastic optimization,'' \emph{arXiv
|
|
|
|
preprint arXiv:1412.6980}, 2014.
|
|
|
|
|
|
|
|
\bibitem{resnet}
|
|
|
|
K.~He, X.~Zhang, S.~Ren, and J.~Sun, ``Deep residual learning for image
|
|
|
|
recognition,'' in \emph{Proceedings of the IEEE conference on computer vision
|
|
|
|
and pattern recognition}, 2016, pp. 770--778.
|
|
|
|
|
|
|
|
\bibitem{dla}
|
|
|
|
F.~Yu, D.~Wang, E.~Shelhamer, and T.~Darrell, ``Deep layer aggregation,'' in
|
|
|
|
\emph{Proceedings of the IEEE conference on computer vision and pattern
|
|
|
|
recognition}, 2018, pp. 2403--2412.
|
|
|
|
|
|
|
|
\bibitem{resa}
|
|
|
|
T.~Zheng, H.~Fang, Y.~Zhang, W.~Tang, Z.~Yang, H.~Liu, and D.~Cai, ``Resa:
|
|
|
|
Recurrent feature-shift aggregator for lane detection,'' in \emph{Proceedings
|
|
|
|
of the AAAI conference on artificial intelligence}, vol.~35, no.~4, 2021, pp.
|
|
|
|
3547--3554.
|
|
|
|
|
|
|
|
\bibitem{laneaf}
|
|
|
|
H.~Abualsaud, S.~Liu, D.~B. Lu, K.~Situ, A.~Rangesh, and M.~M. Trivedi,
|
|
|
|
``Laneaf: Robust multi-lane detection with affinity fields,'' \emph{IEEE
|
|
|
|
Robotics and Automation Letters}, vol.~6, no.~4, pp. 7477--7484, 2021.
|
|
|
|
|
|
|
|
\bibitem{bsnet}
|
|
|
|
H.~Chen, M.~Wang, and Y.~Liu, ``Bsnet: Lane detection via draw b-spline curves
|
|
|
|
nearby,'' \emph{arXiv preprint arXiv:2301.06910}, 2023.
|
|
|
|
|
|
|
|
\bibitem{enetsad}
|
|
|
|
Y.~Hou, Z.~Ma, C.~Liu, and C.~C. Loy, ``Learning lightweight lane detection
|
|
|
|
cnns by self attention distillation,'' in \emph{Proceedings of the IEEE/CVF
|
|
|
|
international conference on computer vision}, 2019, pp. 1013--1021.
|
|
|
|
|
|
|
|
\bibitem{pointlanenet}
|
|
|
|
Z.~Chen, Q.~Liu, and C.~Lian, ``Pointlanenet: Efficient end-to-end cnns for
|
|
|
|
accurate real-time lane detection,'' in \emph{2019 IEEE intelligent vehicles
|
|
|
|
symposium (IV)}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE, 2019, pp.
|
|
|
|
2563--2568.
|
|
|
|
|
2024-08-07 12:35:26 +08:00
|
|
|
\end{thebibliography}
|